Rocket Lab Granted Air Force Research Lab Award to Showcase Digital Engineering with New Archimedes Rocket Engine

Rocket Lab Logo

Rocket Lab USA, Inc. (Nasdaq: RKLB) (“Rocket Lab” or “the Company”), a global leader in launch services and space systems, announced it has been awarded a federal defense contract with a value up to $8m by the U.S. Air Force Research Laboratory (AFRL) to showcase Rocket Lab’s engineering processes and support the development of Rocket Lab’s new reusable rocket engine, Archimedes. This latest contract recognizes the potential of Rocket Lab and Neutron, the Company’s larger reusable rocket, to provide capability for the National Security Space Launch program (NSSL).

The AFRL contract will explore ‘digital engineering’ (DE) concepts related to Archimedes, Rocket Lab’s new oxidizer-rich staged combustion cycle rocket engine that will power the reusable first stage of Neutron and its second stage capable of delivering up to 13,000 kilograms of payload to low Earth orbit. “AFRL has been focusing on DE research, demonstration and implementation, and this provides an early foray into implementing DE into a Launch Vehicle’s vendor’s development,” says Frank Friedl, AFRL/RQR DE Lead.

The contract will facilitate AFRL’s larger effort to develop a digital engineering technology ecosystem that reduces cost, schedule, and risk throughout Space Force programs. The contract includes options to expand Rocket Lab’s implementation of digital engineering processes across the Neutron propulsion system, and further build the digital engineering framework for NSSL Phase 3 Lane 1 launch providers.

Rocket Lab Founder and CEO, Sir Peter Beck, says: “This contract is a win-win when it comes to defense and industry partnerships. It not only allows the U.S. Air Force to collaborate with industry leaders like the Archimedes team to help modernize the U.S. Air Force’s engineering processes and capabilities, but it will also support smoother integration of Neutron to the NSSL program to more efficiently and quickly provide for some of the nation’s most critical missions. We’re looking forward to showcasing our novel technology solutions for the AFRL to help drive their digital engineering strategies to reality.”

“Over the last decade we’ve seen dramatic improvements from commercial space on engine development, allowing us to shift to addressing space access shortfalls,” says Director Rocket Propulsion Division, Dr. Shawn Phillips. “Digital engineering implementation for space access is the framework we need all of industry to embrace, as it can and will impact each area of need. It’s why programs like this one are a significant step forward in how we integrate faster, speed up certification and advance success of commercial space.”

Other Department of Defense agreements in place that support Neutron’s development include a $24.35m contract with the U.S. Space Force’s Space Systems Command (SSC) for the rocket’s upper stage, and a research agreement with the United States Transportation Command (USTRANSCOM) that is currently exploring point-to-point cargo transport use cases employing the Neutron launch vehicle.

About Archimedes

The Archimedes engine is an oxidizer-rich staged combustion cycle engine that will power the reusable first stage of Neutron and the new rocket’s second stage that is designed to carry up to 13,000 kilograms of payload to space. Capable of producing up to 165,000 (733 kilonewtons) pounds of thrust per engine, Archimedes operates at lower stress levels than other rocket engines to enable rapid and reliable reusability. The combined thrust of nine Archimedes engines for Neutron’s first stage is designed to reach 1,450,000 lbf total. Archimedes uses a cryogenic propellant mix of liquid oxygen and methane to enable higher reusability and performance, and many of its critical components are 3D printed including Archimedes’ turbo pump housings, pre-burner and main chamber components, valve housings, and engine structural components.

The Archimedes engine will power Rocket Lab’s new reusable medium-lift rocket Neutron, a next-generation challenger to deliver a cost-effective, reliable, and responsive launch service for commercial and government missions. The advanced design of Neutron includes carbon composite for all of the rocket’s major structures and an innovative upper stage that enables high-performance for complex satellite deployments, including the deployment of satellite mega-constellations.

Previous
Previous

Sierra Space and DoE’s Oak Ridge National Laboratory Revolutionizing Thermal Protection for a New Generation of Commercial Space Transportation Vehicles

Next
Next

Planet Expands Contract with French Digital Farming Company Abelio